宇宙为何会膨胀?这让爱因斯坦非常“懊恼”!

交互设计4年前 (2020)更新 闪电君
2,474 1 0

我国古代先人非常有智慧,在汉代古书刘安的《淮南子·齐俗》中,就提到过“四方上下谓之宇,往固来今谓之宙”,简单来说宇是空间,宙是时间,所以宇宙学是一门研究时空的学问。

宇宙为何会膨胀?这让爱因斯坦非常“懊恼”!

在宇宙中,时间和空间基本上是一回事。因为当你看到宇宙深处的时候,你就看到了过去。我们通常提到的宇宙学长度单位:光年,看起来挺奇怪,像个时间单位,实际上是长度单位,代表是光走一年的距离。

宇宙为何会膨胀?这让爱因斯坦非常“懊恼”!

光走一年的距离是多远呢?也不是很远,大概就是94600亿公里。那银河系有多大呢?直径十万光年以上,也就是说,从银河系的这一端走到另外一端,光要走十万年。

当你看到更遥远的星系,比如仙女座星系,距离地球250万光年,你看到的这个样子是它250万年前的样子,今天可能已经不存在了,另一个风车星系离我们更远,有2100万光年。

所以对研究宇宙学、天文学的人来说,“任时光匆匆流去,我只在乎你的过去”,看不到未来,我们只能通过过去了解宇宙发生了什么。

如何探索宇宙演化历史

要研究宇宙,你首先需要一个非常好的理论,而要创造一个好的理论,你需要一个聪明的大脑。爱因斯坦就建立了非常伟大的理论:广义相对论,但同时你还需要有非常好的观测方法去检验理论,其中多重宇宙探针就是用各种各样不同的手段去探索宇宙。

宇宙微波背景辐射是我们的一个观天利器,它的原理其实很简单,类似利用微波炉的波段去探测光子在全天区的分布,根据大爆炸理论的预言,在天空中有一个3K的微波背景辐射,这个微波背景辐射在天空的分布中带有大量宇宙学信息,因为这些光子是从宇宙大爆炸之后的38万光年飞到了我们的今天,携带了大量沿途的“风景”,所以我们说宇宙微波背景辐射是探索宇宙婴儿时期的利器。宇宙微波背景辐射研究(cosmic microwave background简称CMB)已经两次获得了诺贝尔物理学奖。

宇宙标准烛光:超新星

我们不仅可以通过看光子去研究早期宇宙发生了什么,我们还可以通过观测另一种星级—–超新星,它们被称作宇宙标准烛光,距离我们相对近一些。为什么称之为标准呢?因为它从爆发到死亡,光度随着时间是有规律的,我们可以利用超新星的光度去推断它和我们的距离。

另一方面,利用今天的光谱技术能够测算出速度,有了距离有了速度,科学家就可以测量很多有意思的宇宙信息,比如宇宙学参数等等。

通过超新星,1998年,科学家发现宇宙不仅在膨胀,并且是加速膨胀, 2011年的诺贝尔物理奖就颁发给了超新星相关的研究工作。

宇宙的标准的汽笛:引力波

引力波被称为宇宙的标准的汽笛,研究宇宙不仅可以靠看,还可以靠听。当两个致密天体相互并合绕转的时候,它会形成时空的涟漪,就像声音能被大家能听到一样,因为空气在声音传播当中压强发生了变化,引力波是时空的涟漪,本质上振动可以通过“声音”听到。而且引力波携带了非常重要的宇宙学的信息,所以被叫做标准汽笛。2017年引力波的相关研究也获得了诺贝尔奖。

宇宙标准尺:重子声波振荡

我的研究领域是做重子声波振荡,它被称作宇宙标准尺,前面有烛光可以看亮度,有汽笛可以听声音,标准尺可以测量距离。我们的方法是利用大量的星系样本,利用统计学的性质从里面提取宇宙的演化信息。重子声波振荡研究在2014年也获得了邵逸夫奖。

从这里不难看到,每一种研究方式都很重要。结合这些观测,我们今天能了解宇宙能量组成:4%是大家比较熟悉的普通物质。普通物质就是你、我、他、太阳、黑洞,这些都可以叫做普通物质,你可以看得见摸得着。剩下的96%都是我们不知道的,分成两部分,大概三分之二的是暗能量,剩下的是暗物质。

自从20世纪初设立诺贝尔物理奖以来,一百多次诺贝尔物理奖都颁给了这4%,大家可以猜测一下,还剩下96%的“诺贝尔奖”级研究工作等着我们去发现。

实际上,暗物质、暗能量方面的研究已经获得了多次诺贝尔奖,CMB研究获得过两次,加速膨胀研究2011年获得诺奖,引力波研究2017年获得诺奖,还有今年非常重要的Peebles的研究也获得了诺奖,他建立了一整套宇宙引力学的框架,如果没有他,我们今天的宇宙学研究是很难展开的,他的工作奠定了基础。

这就是我们今天所了解的宇宙演化历史,基本上可以分为三部分,宇宙的开端。在这个阶段宇宙的膨胀非常之迅速,是一个加速膨胀过程,就好像一个人在婴儿阶段生长是非常迅速的,在很短的时间之内从婴儿变成了一个巨婴。

© 版权声明

相关文章

1 条评论

您必须登录才能参与评论!
立即登录